
An SQL interface for querying a program’s objects

Marios Fragkoulisa,∗, Diomidis Spinellisa, Panos Louridasa

aDepartment of Management Science and Technology, Athens University of Economics
and Business, Patision 76, gr-104 34 Athens, Greece

Abstract

Query facilities typically ship as part of database management systems or,
sometimes, bundled with programming languages. Issuing interactive ad-hoc
queries on program data is tough. For object-oriented applications, database
management systems impose an expensive model transformation; general
purpose programming languages lack an interpreter and/or an expressive
query language for manipulating such queries.

This work presents a method and an implementation for mapping an arbi-
trary application’s object-oriented model into a queryable relational one. The
Pico COllections Query Library (pico ql) uses a domain specific language
to define a relational representation of object-oriented data structures and a
parser-generator to implement an sql interface. It then carries out queries
written in sql against c++ program objects. pico ql queries are issued
interactively and are type safe. The paper demonstrates the library’s useful-
ness on three large c++ projects. pico ql enhances query expressiveness
and boosts productivity compared to querying c++ objects via traditional
c++ programming constructs.

Keywords: sql, query, main-memory, object, c++

∗Department of Management Science and Technology, Athens University of Economics
and Business, Patision 76, gr-10434, Athens, Greece tel: +30 2108203370

Email addresses: mfg@aueb.gr (Marios Fragkoulis), dds@aueb.gr (Diomidis
Spinellis), louridas@aueb.gr (Panos Louridas)

0Abbreviations:
pico ql: Pico COllections Query Library
hlql: High Level Query Languages

Preprint submitted to Elsevier May 7, 2013

1. Introduction

The interaction between applications and database management systems
(dbms) has been studied intensively (Reese, 2000; Sanders, 1998). dbmss
complement applications with an api and a standard query language to man-
age data. They offer an important set of properties, namely atomicity, con-
sistency, isolation and durability (known as acid) and expressive, powerful
views on database data. Outsourcing an application’s data management to a
dbms is the typical design option, but one size does not fit all (Stonebraker
and Cetintemel, 2005).

There are many applications that do not require a fully-fledged database
management system. Such applications either do all their processing com-
pletely online, or store their data using bespoke file formats. Program data
may be stored in data structures provided by the programming language,
such as the c++ stl and Java.util containers. Containers are an efficient
vehicle for storing complex objects and running algorithms like set opera-
tions, but they do not offer an easy way to perform ad-hoc queries on the
program objects stored in them. Importing data into a dbms just to improve
querying introduces a superfluous dependency and overhead. pico ql solves
this problem by providing an sql interface for querying program objects.

The problem addressed in this paper is different to interfacing programs
with dbmss. In pico ql the program memory space acts as the database,
and the aim is to provide database views of the program data. By contrast,
when using a dbms, programs have their data stored in a database and aim
to bring database views into the program context.

The contribution of this work is:

• a brief classification of query languages and interfaces, a synopsis of
tools for querying program data through an external interface and a
synopsis of tools for querying (un)structured file data through an ex-
ternal interface,

• a method for mapping the object-oriented model into a queryable re-
lational one,

• a demonstration of the method’s validity through the implementation
and evaluation of pico ql, a library that supports interactive sql
queries against c++ program objects.

2

2. Related work

This paper describes an implementation of an external sql interface to
query program objects. To do that, we combine object-relational mapping
and object query evaluation techniques. Our work has limited affinity with
query languages and techniques for querying object-oriented data (see sec-
tion 2.1). It relates to approaches that provide ad-hoc queries against data
in program memory space (see section 2.2), and to query languages that offer
ad-hoc queries to file-based (un)structured data (section 2.3).

2.1. Query languages and techniques for querying OO data

In this section we examine popular query languages and interfaces for
querying oo data, and present pico ql’s position in this context (sec-
tion 2.1.1). We also examine techniques for query evaluation that oo query
languages adopt (section 2.1.2), and object-relational mapping techniques
that enable interaction between an object-oriented application and a rela-
tional database management system (section 2.1.3).

2.1.1. Query languages and interfaces for querying OO data: a classification

To compare this work with query languages and interfaces for querying
OO data it is useful to partition the latter in four classes using a 2 × 2
matrix, with columns differentiating data location (external database or pro-
gramming language data structures) and rows differentiating the query in-
terface (external or part of the programming language). Figure 1 shows this
classification.

The first class includes query languages that function within the program
scope and interface with data that reside in a database. Examples include
jpql (Keith and Schincariol, 2009), Scalaql (Spiewak and Zhao, 2010) and
linq to sql (Meijer et al., 2006). As already mentioned in section 1, pico
ql deals with a different problem compared to query languages of this class,
namely interfacing through a relational interface to data inside the program.

In the second class we classify dbms interfaces that offer interactive query-
ing of database data. All modern database management systems offer such
an interface.

A third class groups query languages that function within the program
scope and support queries against data collections residing in the program’s
memory space. Examples include linq to objects (Meijer et al., 2006),
jql (Willis et al., 2006), RelC (Hawkins et al., 2011) and others (Schwartz

3

Data location

Program

External

Program

data

structures

Database

MySQL GUI,

ObjectivityDB GUI,

MemSQL (2013) GUI,

Daytona (Greer, 1999) GUI

JPQL (Keith and Schincariol, 2009),

 ScalaQL (Spiewak and Zhao, 2010),

LINQ to SQL (Meijer et al., 2006)

Interface

LINQ to Objects (Meijer et al., 2006),

JQL (Willis et al., 2006),

RelC (Hawkins et al., 2011)

PiCO QL,

sbql4j (Wcislo et al., 2011),

QBD (Lencevicious et al., 2003)

Figure 1: Object-oriented query language classes

et al., 1986; Adamus et al., 2008). Query languages in this class query el-
ements residing in the program memory space, like pico ql, but have a
different focus and aim. They perform efficiently specific programming tasks
and extend the programming language focusing on data retrieval through
queries fixed at compile time. By contrast, pico ql provides a data analysis
tool that focuses on runtime query flexibility and expressiveness. Some of
the referenced query languages in this class do attempt to offer an interactive
query interface (see section 2.2.2), bringing them closer to our work.

pico ql belongs in a fourth class, which lies opposite to query languages
interfacing programs with database systems. It is representative of a different
class of query languages that will be described in section 2.2.

2.1.2. Object-oriented query evaluation techniques

Queries in object oriented query languages typically leverage path ex-
pressions (Frohn et al., 1994) in the execution mechanism. Path expressions
are a core aspect of most object-oriented query languages. These support
a declarative dialect for issuing nested object-oriented queries. Queries can
reference literals, objects, and collections nested in arbitrary depth.

4

2.1.3. Object-relational mapping techniques

Fundamental issues in object-relational mapping concern the mapping of
programming language classes, associations (has-a, many-to-many), inheri-
tance (is-a) and polymorphism to relational constructs.

Under most approaches classes become relational tables and non-scalar
values within classes, i.e. associations, give their place to relationship in-
stances, i.e. primary key-foreign key chains between relational tables. Many-
to-many associations require an intermediate table for tracking the associa-
tion instances between the two tables.

Three approaches have been proposed to implement a relational mapping
of inheritance and polymorphism.

1. Include the whole class hierarchy in a single table, thus each column
maps to each attribute of the class hierarchy and an extra column
identifies the object type.

2. Each table maps to a class, abstract or concrete, so that the full infor-
mation on an object is obtained by joins on the tables up the hierarchy.

3. Map each concrete class to a table containing all the attributes (both
own and inherited).

Object-relational mapping techniques are implemented by object-relational
mapping frameworks. Two popular ones are Hibernate for Java (Bauer and
King, 2006) and Microsoft ado .net Entity Framework for .net (Melnik
et al., 2007).

2.2. Ad-hoc queries to program data

Ad-hoc queries to program data is an area containing diverse lines of re-
search, including pico ql. It includes main memory d(b)ms that offer a
query interface to database data (section 2.2.1), query languages that lever-
age programming through querying and attempt to support ad-hoc queries
(section 2.2.2), and domain specific ad-hoc queries to program data (sec-
tion 2.2.3).

2.2.1. Ad-hoc queries to main memory D(B)MS

Main memory query processing employs pointers for cross-referencing of
data structures, including object associations and foreign keys to relational
table tuples (Lehman and Carey, 1986). In these cases pointers drive the use
of precomputed joins where, for example, a foreign key is substituted with
the tuple(s) it points to.

5

Main memory oo dbm systems like MemSQL (2013), support sql
queries through an external query interface. Memsql uses lock-free data
structures in memory, translates sql queries to c++ code for efficiency,
swaps data to disk after a transaction succeeds, and behaves exactly like
Mysql, with which it is wire-compatible.

at&t’s Daytona (Greer, 1999) data management system with its high
level fourth generation query language Cymbal also fits in this category.
Cymbal is a powerful multi-paradigm language, which includes ansi 89 sql
as a subset. Daytona is based on a code-generation architecture, like pico
ql. Ad-hoc queries in Cymbal translate into c programs complete with a
makefile, compile, and execute against data stored in standard unix filesys-
tems. Cymbal provides containers optimized for in-memory computation,
which can also support applications required to operate in main memory at
all times.

2.2.2. Ad-hoc queries to object collections

Some object-oriented query languages for in-memory object collections
attempt to offer ad-hoc queries. jql (Willis et al., 2006) and oql/c++ (Cat-
tell and Barry, 2000) provide limited support for interactive queries; sbql4j
(Wcislo et al., 2011) promises support for interactive queries in the future.

jql supports dynamic queries against Java collections. The query eval-
uator can accept an abstract syntax tree at run time and execute the query
with the cost of runtime type checking. Although flexible queries can be
constructed from user input, there is always the cost of programming the
conversion of an untyped query expression to a typed one.

oql/c++ supports queries against c++ data structures. Since queries
take the form of untyped strings, they can be input from an external interface.
Query input parameter types, however, are checked at runtime and type
violations trigger an error exception. Each query’s result is specified as a
parameter to the function that executes it. An error exception is generated
if the actual result type differs from the specified one.

sbql4j consists of a prototype implementation of sbql (Adamus et al.,
2008) for Java. sbql, the Stack Based Query Language, is the query lan-
guage for a Stack Based Architecture (sba). sba conceptually and semanti-
cally unifies querying and programming by providing orthogonal data/object
construction, orthogonal language constructs, type safety, and advanced pro-
gramming abstractions, like views. Queries in sbql4j undergo compile-time
analysis. Ad-hoc queries have been proposed as a future extension. These

6

require that the query language type checking mechanism collaborates with
Java’s run time type checking mechanisms.

2.2.3. Domain specific ad-hoc queries to program objects

Lencevicius et al. (2003) introduced the query-based approach to debug-
ging (qbd) and a corresponding tool. The debugger demonstrates capabili-
ties for dynamic and on-the-fly queries in Java using load-time code instru-
mentation. A custom class loader generates and compiles custom debugger
code. Queries expose object state and object relationships. The debugger
has the ability to gather plain statistical data but does not support sophis-
ticated operations like aggregations, nested queries, and views offered by
general purpose query facilities.

ptql (Goldsmith et al., 2005) is a query language for program traces. It
queries the execution trace seeking to match a context-sensitive pattern of
events in Java programs. ptql, an sql-like language, adopts a relational
data model. It performs online query evaluation, but acts upon sequences of
events, not object data.

2.3. Ad-hoc queries to file based (un)structured data

In recent years, the exponential growth of (un)structured datasets drove
the emergence of the map-reduce programming paradigm (Dean and Ghe-
mawat, 2008). Despite effortless parallelism, programming in a map-reduce
fashion using procedural statements hindered its full potential. High level
query languages (hlql) like Pig Latin (Olston et al., 2008), hiveql (Thu-
soo et al., 2010) and jaql (Beyer et al., 2009) came forward to address
this (Stewart et al., 2011). hlqls like scope (Chaiken et al., 2008), which
defines an extensible relational model, and the query language provided by
Dremel (Melnik et al., 2010), which operates on a columnar storage repre-
sentation share the same objectives as map-reduce and complement it.

The above hlqls are languages for ad-hoc analysis of datasets. Except
for jaql, hlqls resemble sql. jaql is a functional higher-order query lan-
guage; it offers support for filter, transformation, aggregation, sort, group
by, and join operations. scope is a scripting language whose syntax strongly
resembles sql, and, in addition, it models data as sets of rows with strictly
typed columns. It is highly extensible with user-defined operators and func-
tions. scope interacts with the Cosmos (Chaiken et al., 2008) execution
environment, which is more flexible than map-reduce in that it can han-
dle any task expressible as an acyclic data flow graph. Dremel provides an

7

sql-like language that executes ad-hoc queries on a columnar representation
of nested data without using a map-reduce layer. Its architecture, a serving
tree, is widely used in distributed search engines. Pig Latin is a data flow lan-
guage that blends sql with procedural programming. In Pig Latin, queries
consist of a sequence of steps with each step declaring a query operation at
a high level (select etc.), similarly to an sql clause. hiveql is a declar-
ative query language; it implements a subset of sql and, mostly, adopts its
syntax. It supports nested queries in the from clause, aggregations, joins,
group-by clauses, views, and functions on data types. According to Stewart
et al. (2011), jaql is Turing-complete while hiveql and Pig Latin are com-
putationally equivalent to sql. The latter become Turing-complete with the
introduction of user-defined functions.

Querying datasets stored in files is not a new idea. Data management
interfaces like odbc (Sanders, 1998) have supported sql queries over csv
files for years.

3. A relational interface for OO data

Our method for exposing the object-oriented data model through a re-
lational interface addresses two challenges: first how to provide a relational
representation of object-oriented data structures; secondly how to map sql
queries to main-memory object-oriented data structures through their rela-
tional representation. The key points of the design that address these chal-
lenges include (a) rules for creating a relational representation out of object-
oriented data structures, (b) a domain specific language (dsl) for specify-
ing relational representations and access information of object-oriented data
structures, (c) an evaluation method for relational queries in this object-
oriented environment, and (d) the formal description of a new operator in-
troduced to achieve the mapping of object associations to a relational repre-
sentation. We conclude the section with a synopsis of the steps required to
embed the relational interface into an application.

3.1. Relational representation of object-oriented data structures

The problem of transforming object-oriented data to their relational coun-
terpart, and vice versa, has been studied thoroughly in the literature (Bauer
and King, 2006; Melnik et al., 2007). We address a different but related,
problem: how to represent object-oriented data structures in relational terms.
Providing a relational interface to object oriented data without storing them

8

in a relational database management system is not straightforward; the issue
at hand is not the transformation of data from object structures into rela-
tional structures, but the representation of data in different models. In other
words, we do not transform the object data; instead we want to provide
a relational view on top of it. Issues that emerge in bidirectional trans-
formations (Czarnecki et al., 2009) between data models, such as the o-r
cross-metamodel data mapping, are not examined.

In this work the underlying data model is solely object-oriented. This
leverages object-oriented features like inheritance and subtype polymorphism
in queries. To do that, however, we must solve the representation mismatch
between relations and objects. Relations consist of a set of columns that host
scalar values, while objects form graphs of an arbitrary structure.

pico ql provides a relational representation of object-oriented data struc-
tures in the form of virtual tables (The SQLite team, 2013) supported by
sqlite (Owens, 2006), an embeddable database engine. This includes has-a
associations between objects (section 3.1.1), many-to-many associations be-
tween objects (section 3.1.2) and is-a associations and subtype polymorphism
(section 3.1.3).

3.1.1. Mapping has-a associations

Has-a associations are of two types: has-one and has-many. Here we
describe how these are represented. Let the containing object be an object
with some contents and the contained be those contents. Has-one associa-
tions include built-in primitive values, references to primitives, objects and
references to objects. These are represented as columns in a virtual table
that stands for the containing object. Has-many associations include collec-
tions of contained objects and references to collections of contained objects.
These are represented by an associated table that stands for the collection
of contained objects. Although the associated table’s schema is static, the
contents of the associated table are specific to the containing object instance:
each instance of the containing instance has distinct contents.

Figure 2(a) shows the class diagram of a trivial object-oriented data
model. Figure 2(b) shows the respective virtual table schema. On the
schema, each record in the customer table (Customer vt) represents a cus-
tomer. A customer’s associated medical plan has been included in the cus-
tomer’s representation: each attribute of the MedicalPlan class occupies a
column in Customer vt. In the same table, foreign key column accounts set id
identifies the set of accounts that a customer owns. A customer’s account

9

information may be retrieved by specifying in a query a join with the ac-
count table (Account vt). By specifying a join with the account table, an
instantiation happens. The instantiation of the account table is customer
specific; it contains the accounts of the current customer only. For another
customer another instantiation would be created. Thus, multiple instances
of Account VT implicitly exist in the background as Figure 2(b) shows.

Figure 2: One-to-many association

Account

+description: string

-balance: integer

+available_amount: integer

+reserved_amount: integer

+get_balance(): integer

Customer

+first_name: string

+surname: string

+get_mplan(): MedicalPlan const

+get_accounts(): set<Account> const

MedicalPlan

+description: string

+expire_date: string

has-a

N

1

has-a
11

(a) Class diagram

N

1

Customer_VT

first_name TEXT

surname TEXT

med_plan_description TEXT

med_plan_expire_date TEXT

FOREIGN KEY(accounts_set_id)

REFERENCES Account_VT

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

base BIGINT

(b) Virtual table schema

In pico ql we provide each virtual table representing a nested data struc-
ture with a column named base, which takes part in has-a associations. The
one side of the association is rendered by a foreign key column, which iden-
tifies the contents of an associated table as shown in the previous example,
and the other side is rendered by the associated table’s base column, which
fulfills an appropriate instantiation. The base column is instrumental both
for mapping associations to a relational representation and for mapping the
relational query evaluation to the underlying object-oriented environment
(Section 3.3).

3.1.2. Mapping many-to-many associations

Many-to-many associations require no special treatment; they are treated
similarly to has-many associations. Continuing with the bank application
example, suppose that, in addition to the above specification, an account
can have many owners (Figure 3). The relationship can be described as a
has-many association from both sides, that is, account to bank customer and
vice versa. The effect in the virtual table schema is multiple instantiations for

10

Customer vt as well, since it is now possible to identify the bank customers
that own a specific account.

In the relational model, a many-to-many relationship requires an inter-
mediate table for the mapping.

In pico ql virtual tables provide a relational representation to an applica-
tion’s data structures, but are only views on the data. For each instance of a
Customer (say John Doe) a distinct Account vt (say John Doe Account vt)
virtual table is instantiated. Similarly, for each instance of an Account (say
Saving Account) a distinct Customer vt (say Saving Account Customer vt)
is instantiated. Section 4.2 discusses the amount of effort and computational
cost in creating virtual table instantiations.

Figure 3: Many-to-many association

Account

+description: string

-balance: integer

+available_amount: integer

+reserved_amount: integer

+get_balance(): integer

+get_owners(): list<Customer *>

Customer

+first_name: string

+surname: string

+get_mplan(): MedicalPlan const

+get_accounts(): set<Account *> const

MedicalPlan

+description: string

+expire_date: string

has-a

N

M

has-a
11

(a) Class diagram

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

binded_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

available_amount DOUBLE

binded_amount DOUBLE

FOREIGN KEY(customers_set_id)

REFERENCES Customer_VT

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

binded_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

available_amount DOUBLE

binded_amount DOUBLE

FOREIGN KEY(customers_set_id)

REFERENCES Customer_VT

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

binded_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

available_amount DOUBLE

binded_amount DOUBLE

FOREIGN KEY(customers_set_id)

REFERENCES Customer_VT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

Customer_VT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

med_plan_expire_date TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

Customer_VT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

med_plan_expire_date TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

Customer_VT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

med_plan_expire_date TEXT

N

M

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

BankCustomer_VT

base INT

first_name TEXT

surname TEXT

sex TEXT

med_plan_description TEXT

Customer_VT

first_name TEXT

surname TEXT

med_plan_description TEXT

med_plan_expire_date TEXT

FOREIGN KEY(accounts_set_id)

REFERENCES Account_VT

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

Account_VT

description TEXT

balance DOUBLE

base INT

available_amount DOUBLE

binded_amount DOUBLE

Account_VT

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

FOREIGN KEY(customers_set_id)

REFERENCES Customer_VT

base BIGINT

base BIGINT

(b) Virtual table schema

3.1.3. Mapping is-a associations

The support of is-a associations in the object-oriented paradigm provides
powerful features, namely inheritance and subtype polymorphism. pico ql
offers two ways to incorporate oo inheritance and subtype polymorphism ad-
dressable at a relational representation of data structures; see Figure 4(a) for
an example inheritance hierarchy. These ways correspond to ones supported
by rdbmss.

First, it is possible to represent each class in the inheritance hierarchy as
a separate virtual table and use a relationship to link them – see Figure 4(b),
following the table to class mapping approach. Second, it is possible to
include inherited members as columns in each of the subclasses represented as

11

virtual tables – see Figure 4(c), following the table to concrete class mapping
approach.

Figure 4: Inheritance and subtype polymorphism support

Account

+description: string

-balance: integer

+available_amount: integer

+reserved_amount: integer

+get_balance(): integer

PremiumAccount

+overdraft: integer

(a) Class diagram

1 1

PremiumAccount_VT

overdraft INTEGER

FOREIGN KEY(account_id)

REFERENCES Account_VT

Account_VT

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

base BIGINT

(b) Table to class mapping

PremiumAccount_VT

overdraft INTEGER

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

Account_VT

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

(c) Table to concrete class
mapping

For polymorphic containers care must be taken in representing their con-
tents that involve subtypes of the container element type. Suppose we rep-
resented a polymorphic container of accounts, that is each element could
be a reference to a savings account or premium account, as in Figure 5(a).
Virtual table Account vt — see Figure 5(b), which represents the container
of accounts, includes columns that map to members of Account type. This
way, basic account information can be retrieved directly from Account vt.
Virtual table PremiumAccount vt includes columns that map to members of
type PremiumAccount. Similarly virtual table SavingsAccount vt includes
columns that map to members of type SavingsAccount. A relationship in-
stance links the virtual table representing the base class with the virtual
table representing a derived class. Consequently premium, savings account
information can be retrieved from the virtual tables representing the derived
classes through the relationship instances.

During a query (Listing 8), columns that map to derived type mem-
bers may be accessed by issuing joins to link the relational representation of
the base class to the relational representations of the derived classes. Joins
between sqlite virtual tables take the form of left outer joins; hence join
operations trigger checks in the background to match a container element’s
derived type against the type represented by a derived class’ relational rep-
resentation. In the case, say, of an account container element which is a
reference to a PremiumAccount object instance, the type check as a result

12

Figure 5: Full support of polymorphic containers

Account

+description: string

-balance: integer

+available_amount: integer

+reserved_amount: integer

+get_balance(): integer

PremiumAccount

+overdraft: integer

SavingsAccount

+due_date: string

(a) Class diagram

1 1

Account_VT

description TEXT

balance INTEGER

available_amount INTEGER

reserved_amount INTEGER

FOREIGN KEY(premiumac

count_id) REFERENCES

PremiumAccount_VT

PremiumAccount_VT

overdraft INTEGER

1 1
SavingsAccount_VT

due_date TEXT

FOREIGN KEY(savingsac

count_id) REFERENCES

SavingsAccount_VT

base BIGINT

base BIGINT

(b) Virtual table schema

of joining with PremiumAccount vt will succeed, since PremiumAccount vt
represents type PremiumAccount, while the type check resulting from joining
with SavingsAccount vt will fail and the query will terminate with a mis-
use error message. Type checks ensure type consistency for each container
element. In the result set, the columns of the relational representations of
other derived classes than the one the element belongs are populated with
null values.

3.2. A Domain Specific Language for defining relational representations of
object-oriented data structures

pico ql provides a dsl for describing the mapping of the oo data into
a relational model. The mapping is performed in two steps: a) struct view
definitions describe a virtual table’s columns and b) virtual table definitions
link a struct view definition to a program’s data structure type. Together
they compose a relational representation definition. The dsl’s syntax is for-
mally described in Listing 1 using Backus-Naur Form (bnf) notation.

Listing 1: dsl syntax in bnf notation
; Virtual table definition

<virtual table def> ::= ’CREATE VIRTUAL TABLE’ <virtual table name>

’USING STRUCT VIEW’ <struct view name>

[’WITH REGISTERED C NAME’ <base variable>]

’WITH REGISTERED C TYPE’ <struct type>

[’USING LOOP’ <loop variant>] ’$’

<struct type> ::= <container> | <object> | <struct> |
<primitive data type> [’*’]

13

<container> ::= (<container class> ’<’ <struct type>

; if associative container

[’,’ <struct type>] ’>’ [’*’]) | <C container>

<container class> ::= <stl class> | <other class>

<stl class> ::= ’list’ | ’vector’ | ’deque’ | ’set’ | ’multiset’ | ’map’ |
’multimap’

<other class> ::= <SGI forward container concept compatible>

<C container> ::= <d type> | <struct> ’:’ <d type>

; For C linked lists and C arrays respectively. The loop variants for these

; containers can be customized by the USING LOOP directive

; which may include macros. The latter can be defined at the top of the DSL

; description.

<d type> ::= <struct> | <primitive data type> [’*’]

<struct> ::= [’struct’] <struct name> [’*’]

<primitive data type> ::= ’int’ | ’string’ | ’double’ | ’char’ | ’float’ | ’real’ |
’bool’ | ’bigint’

<object> ::= <class name> [’*’]

<loop variant> ::= <user defined loop variant>

; Struct view definition

<struct view def> ::= ’CREATE STRUCT VIEW’ <struct view name> ’(’

<column def> {’,\n’ <column def>} ’)$’

<column def> ::= <primitive column def> | <struct column def> |
<struct view inclusion>

<primitive column def> ::= <column name> <primitive data type> ’FROM’

<access statement>

<struct column def> ::= ’FOREIGN KEY(’ <column name> ’) FROM’

<access statement> ’REFERENCES’

<virtual table name> [’POINTER’]

<access statement> ::= <valid C++ expression> | ’self’

14

<struct view inclusion> ::= ’INCLUDES STRUCT VIEW’ <struct view name>

[’FROM’ <access statement> [’POINTER’]]

; Standard relational view definition

<rel view def> ::= <ANSI 92 SQL standard> ’$’

3.2.1. Struct view definition

Struct view definitions (Listings 2 – 5) describe the columns of a virtual
table. They resemble relational table definitions. Struct view definitions
include the struct view’s name and its attributes. Each attribute description
contains the essential information for defining a virtual table column.

Column definitions are of two types, data column definitions and special
column definitions for representing has-a, many-many and is-a object asso-
ciations. Data column definitions include the column’s name, data type, and
access path, that is, a c++ expression that retrieves the column value from
the object. Special column definitions include the column’s name, access
path and associated virtual table. Two kinds of special column definitions
are supported, foreign key definitions (Listings 2, 3) and struct view inclusion
definitions (Listings 4, 5).

Listing 2: Struct view definition - has-a relationship (Figure 3)
CREATE STRUCT VIEW Account SV (

description TEXT FROM description,
balance INTEGER FROM get balance(),
available amount INTEGER FROM available amount,
reserved amount INTEGER FROM reserved amount,
FOREIGN KEY(customers set id) FROM get owners()

REFERENCES Customer VT)

The foreign key column definition (Listings 2, 3) supports relationships
between virtual tables that represent a has-a (Listing 2) or an is-a (Listing 3)
association between the underlying oo data structures. A foreign key specifi-
cation resembles its relational counterpart except that referential constraints
are not checked in this context and no matching column of the referenced
table is specified. This is because the foreign key column matches against an
auto-generated column of the referenced virtual table, the base column. The
base column does not appear in relational representation definitions because
the dsl parser-compiler can understand when the column is required and
generates the appropriate code for it.

Listing 3: Struct view definition - is-a normalization (Figure 4(b))

15

CREATE STRUCT VIEW PremiumAccount SV (
overdraft INTEGER FROM overdraft,
FOREIGN KEY(account id) FROM self REFERENCES Account VT)

Listings 3 and 4 illustrate the supported inheritance mapping options
in terms of the dsl. Listing 3 shows how to represent each class in the
inheritance hierarchy as a separate virtual table (table per class mapping)
and using a relationship to link them. self is a language keyword that denotes
an empty access path. It functions as a placeholder and is used to support
an inheritance mapping through a relationship instance. The base object’s
identity is adequate information for the mapping in these cases. On the other
hand, Listing 4 shows support for including inherited members as columns in
each of the subclasses represented as virtual tables (table per concrete class
mapping).

Listing 4: Struct view definition - is-a inclusion (Figure 4(c))
CREATE STRUCT VIEW PremiumAccount SV (

overdraft INTEGER FROM overdraft,
INCLUDES STRUCT VIEW Account SV) % Struct view inclusion

Including relational representations into others is useful for representing
not only is-a but also has-a associations inline (Listing 5). Such is the case
with a medical plan included in a customer’s relational representation in
Figure 3.

Listing 5: Struct view definition - has-a inclusion (Figure 3(b))
CREATE STRUCT VIEW Customer SV (

firstName TEXT FROM first name,
surname TEXT FROM surname,
FOREIGN KEY(accounts set id) FROM get accounts()

REFERENCES Account VT,
INCLUDES STRUCT VIEW MedicalPlan SV

FROM get mplan()) % Struct view inclusion

3.2.2. Virtual table definition

Virtual table definitions (Listing 6) link an object-oriented data structure
to its relational representation. They carry the virtual table’s name and in-
formation about the data structure it represents. Data structure information
includes an identifier (c name) and a type (c type); the identifier maps the
application code data structure to its virtual table representation; the type

16

must agree with the data structure’s programming language type. A virtual
table definition always links to a struct view definition through the using
struct view syntax.

Listing 6: Virtual table definition
CREATE VIRTUAL TABLE Account VT
USING STRUCT VIEW Account SV
WITH REGISTERED C NAME accounts
WITH REGISTERED C TYPE set<Account ∗>;

3.3. Mapping a relational query evaluation to the underlying object-oriented
environment

In pico ql, the relational representation of an object-oriented data struc-
ture comprises one or more virtual tables. Each virtual table in the represen-
tation enables access to some part of oo data structure using path expressions
(see Listing 12 for an example of the underlying auto-generated routines).

For example, a container of PremiumAccount objects could be represented
by rendering the is-a association between classes Account and PremiumAc-
count via a table per class mapping — recall Figure 4(b); then the design
would include two virtual tables, one for each class. The virtual table repre-
senting the Account type provides access to Account members and the virtual
table representing the PremiumAccount type provides access to PremiumAc-
count members. Member access is provided by path expressions according to
the dsl specification.

Virtual tables may be combined in sql queries by means of join operations
(Listings 7, 8). Object-oriented data structures may span arbitrary levels of
nesting. Although the nested data structure may be represented as one
or more virtual table(s) in the relational interface, access to it is available
through a parent data structure only. The virtual table representing the
nested data structure (vtn) can only be used in sql queries combined with
the virtual table representing a parent data structure (vtp). For instance,
one cannot select a customer’s associated medical plan without first selecting
the customer. If such a query is input, it terminates producing a misuse error
message.

A join is required to allow querying of vtns. The join uses the column
of the vtp that refers to the nested structure (similar to a foreign key) and
the vtn’s base column, which acts as an internal identifier. When a join
operation references the vtn’s base column it instantiates the vtn by setting

17

the foreign key column’s value to the base column. This drives the new
instantiation thereby performing the equivalent of a join operation: for each
value of the join attribute, that is the foreign key column, the operation finds
the collection of tuples in each table participating in the join that contain that
value. In our case the join is a precomputed one and, therefore, it has the
cost of a pointer traversal. The base column acts as the activation interface
of a vtn, and guarantees type-safety by checking that the vtn’s specification
is appropriate for representing the nested data structure.

Providing relational views of object-oriented data using a relational query
engine imposes one requirement to sql queries. vtps have to be specified
before vtns in the from clause. This stems from the implementation of
sqlite’s syntactic join evaluation and does not impose a limitation to query
expressiveness.

Listing 7: Join query — querying is-a and has-a associations
SELECT ∗ FROM PremiumAccount VT
JOIN Account VT
ON Account VT.base = PremiumAccount VT.account id
JOIN Customer VT
ON Customer VT.base = Account VT.customer id;

Listing 8: Join query — querying polymorphic data structures
SELECT ∗ FROM Account VT
JOIN PremiumAccount VT
ON PremiumAccount VT.base=Account VT.premiumaccount id
JOIN SavingsAccount VT
ON SavingsAccount VT.base=Account VT.savingsaccount id;

In addition to combining relational representations of associated data
structures in an sql query, joins may also be used to combine relational
representations of unassociated data structures; this is implemented through
a nested loop join. Say the bank regulator requested account information of
specific bank customers by providing their full names. After incorporating
the customer list in the system and creating its relational representation
(irscitizen vt) we could issue the query shown in Listing 9.

Listing 9: Relational join query
SELECT ∗ FROM Customer VT, IRSCitizen VT
WHERE Customer VT.first name = IRSCitizen VT.first name
AND Customer VT.surname = IRSCitizen VT.surname;

18

3.4. Relational algebra operators

Although relational algebra concerns sets of items, its operators can be
applied to arbitrary collections of items. According to Meijer (2011), linq
also builds on this approach.

pico ql introduces a new operator, β,1 to instantiate virtual tables that
represent object collections accessible through others. Let Ξ be a virtual
table representing an object collection (the containing) and Λ a virtual table
representing an object collection (the contained) nested within the first col-
lection. The instantiation of Λ relies on its base column, which is matched
to a corresponding foreign key column of Ξ (fkbase). For each row of Ξ (say
ξ∗) the operator instantiates a virtual table (Λ∗) representing the contained
object collection (presented in Sections 3.1.1, 3.1.2). This operation casts the
foreign key column value into the contained object collection’s type and the
object collection starting at this address is instantiated through the virtual
table representing it. A foreign key column represents an object association
as explained in Sections 3.1.1 and 3.2.1. A formal description is presented in
Listing 10.

Listing 10: Formal description of virtual table instantiations
Let β be an operator casting an untyped memory address into a

pointer to a primitive type, an object, or a collection of objects ,
Ξ be a virtual table instantiating the containing object collection ,
ξ1, ξ2, ..., ξν be rows of virtual table Ξ, that is ξ1, ξ2, ... ξν ε Ξ, and
Λ1,Λ2, ...,Λν ,Λ be virtual table instantiations of the contained object collection

then
β(πfkbase

(ξ1))→ Λ1,

β(πfkbase
(ξ2))→ Λ2,

...
β(πfkbase

(ξν))→ Λν ,

β(πfkbase
(Ξ))→ Λ, where Λ = Λ1 ∪ Λ2 ∪ ... ∪ Λν

In addition, pico ql supports all relational algebra operators as imple-
mented by sqlite (Owens, 2006), that is, the select part of sql92 excluding
right outer joins and full outer joins. Queries expressed using the latter, how-
ever, may be rewritten with supported operators (Owens, 2006). For a right

1The initial letter of the Greek word βάση which means base

19

outer join, rearranging the order of tables in the join produces a left outer
join. A full outer join may be transformed using compound queries.

For the most part, query efficiency mirrors sqlite’s query processing al-
gorithms enhanced through the following of pointers in memory.

3.5. Embedding pico ql in applications

The process for embedding pico ql in an application (Figure 6) includes
three steps. First, pico ql requires a relational representation of the target
data structures and data structure information in order to generate code for
querying them. These pieces of information are supplied to pico ql through
its dsl. Then the data structures have to register with pico ql through a
specific function call and a single function call is required to start the library
(Listing 11). Finally, the application makefile has to change to include pico
ql compile directives.

Listing 11: pico ql directives
#include "pico_ql_search.h"

using picoQL;

...

pico_ql_register("accounts", &systemAccounts);

pico_ql_serve(8080);

4. pico ql implementation specifics

pico ql is an sql query library for c++ applications. The cornerstone of
the pico ql implementation is a meta-programming technique (section 4.1)
devised to (a) create a relational representation of arbitrary c++ program
data structures using a relational specification of these data structures, and
(b) generate c++ code for querying the data structures through their rela-
tional representation. pico ql leverages the virtual table module of sqlite
to support oo data (section 4.2). The swill (Lampoudi and Beazley, 2002)
library is used to expose the query service to end users through a web-based
interface (section 4.3).

4.1. Generative programming

Our solution to the problem of representing any c++ data structure as
a virtual table is based on a user-driven relational specification and a meta-
programming technique, generative programming. Specifically, a parser-
generator analyzes relational specifications and c++ program data structure

20

Figure 6: Steps for plugging pico ql in an application.

Provide user description

in PiCO QL DSL

Execute generator to

analyse user description

and generate C++ code

Include PiCO QL directives

in application makefile

Include PiCO QL directives

in application code

Compile PiCO QL with

the application

Execute application with

PiCO QL plugged in

information. Then it generates virtual table definitions and c++ functions
to address sql queries. Queries target virtual tables, but internally they are
resolved by executing the generated c++ code, which operates on the c++
application code data structures. The generative programming component
of pico ql was implemented in Ruby (Flanagan and Matsumoto, 2008).

4.2. Virtual table implementation

pico ql implements an sqlite virtual table module to provide a relational
interface to c++ data structures. Specifically, the implementation includes
a number of callback functions that specify the pico ql virtual table’s be-
havior: create, destroy, connect, disconnect, open, close, filter, column, plan,
advance cursor and eof. The sqlite query engine calls these functions when
performing a query on a pico ql virtual table. Of all callback functions,
filter and column are specific to a pico ql virtual table and are generated
according to the relational specification of the c++ data structure that the
virtual table represents (Listing 12). A hook in the query planner (plan
callback function) ensures that the constraint referencing the base column
has the highest priority in the constraint set for the vtn and, therefore, the

21

instantiation will happen prior to evaluating any real constraints.

Listing 12: Software structure of relational representation
int Account VT search(...) {

...
switch(col) {
case 0:

for (int i = 0; i < accounts.size (); i++) {
if (compare(accounts[i].description , operator, rhs)

add to result set ();
}
break;

case ...
...

In query processing, pico ql and sqlite share responsibilities. pico
ql controls query planning through an implemented callback function and
carries out constraint and data management for each virtual table. sqlite
performs high level query evaluation and optimization (Owens, 2006, p. 360).

Having virtual table instantiations come into existence is not hard or
computationally intensive. A virtual table can be thought of as a concept
whose rules are defined in the dsl. Data structures that adhere to the
concept’s rules use its representation and instantiate the virtual table. In
effect, a virtual table is a structure that the query engine uses when the
virtual table is referenced in a query. Multiple instantiations use the same
structure and the structure stores a reference to its current instantiation; a
new virtual table instantiation has the cost of a pointer dereference.

4.3. Query interface

A user interface is required in order to issue queries and view the results.
For this we adopted swill, a library that adds a web interface to c/c++
programs. Each web page in swill is a c function that blends html and
c/c++ application code to present useful information about an application.
For a query interface three such functions were used, one to input queries,
one to output query results, and one to display errors. Using swill as a
bridge the user interface can interact with sqlite easily through sqlite’s c
api. Queries are interpreted by the sqlite engine, which in turn calls the
virtual table implementation’s callback functions (section 4.2).

22

5. Evaluation of pico ql’s query mechanism

pico ql’s evaluation follows the Goal-Question-Metrics approach (Basili
et al., 1994). The goal is to show that the current work offers an improved
solution compared to alternatives. Two questions will drive the answers
required to achieve the goal, specifically:

1. How does the current work compare to alternatives in terms of expres-
siveness?

2. How does the current work compare to alternatives in terms of temporal
and spatial efficiency?

Finally, the selected metrics consist of:

• lines of code for measuring expressiveness

• cpu time in seconds for measuring temporal efficiency.

• storage space for measuring spatial efficiency, both for storing the code
on disk and for storing the data in memory during execution.

Table 1: Projects used in evaluation

Project url Size (kloc)
Stellarium http://www.stellarium.org/ 888
QLandKarte http://www.qlandkarte.org/ 39
cscout http://www.spinellis.gr/cscout/ 18

pico ql has been evaluated on three large c++ projects, Stellarium,
QLandKarte, and cscout (Spinellis, 2010) (see Table 1). In the case studies
we compare pico ql queries to equivalent queries expressed using c++
constructs with respect to the described metrics. In addition, cscout can
dump the relationships of an entire workspace in the form of an SQL script.
This can then be uploaded into a relational database for further querying
and processing. Hence for cscout we also carry out the measurements in
a Mysql database with a default configuration and enabled indexes. The
pico ql evaluation queries for the case studies, the pico ql dsl artifacts,
the c++ queries and the Mysql queries are available online2,3,4 except for

2https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/Cscout
3https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/QLandKarte

23

cscout’s c++ queries, which are embedded in csout’s plain query facility.
We list the pico ql dsl for the Stellarium case study in Listing 13.

Listing 13: Stellarium DSL virtual table descriptions
CREATE STRUCT VIEW Meteor (

velocity DOUBLE FROM velocity,
magnitude FLOAT FROM mag,
observDistance DOUBLE FROM xydistance)$

CREATE VIRTUAL TABLE Meteor
USING STRUCT VIEW Meteor
WITH REGISTERED C NAME active
WITH REGISTERED C TYPE vector<Meteor∗>$

CREATE STRUCT VIEW Planet (
name STRING FROM data()−>getNameI18n().toStdString(),
hasAtmosphere BOOL FROM data()−>hasAtmosphere(),
distance DOUBLE FROM data()−>getDistance(),
FOREIGN KEY(satellites id) FROM data()−>satellites.toStdList()

REFERENCES SatellitePlanet)$

CREATE VIRTUAL TABLE Planet
USING STRUCT VIEW Planet
WITH REGISTERED C NAME allPlanets
WITH REGISTERED C TYPE list<PlanetP>$

CREATE VIRTUAL TABLE SatellitePlanet
USING STRUCT VIEW Planet
WITH REGISTERED C TYPE list<QSharedPointer<Planet> >∗$

5.1. Case study 1: Stellarium

Stellarium is an open source virtual real time observatory of stellar ob-
jects. It hosts and presents useful information about stellar objects through
its user-driven gui. sql queries in Stellarium’s use case concern planets
and meteors typically stored in c++ containers. Each container contains
approximately 100 elements. Measurements of pico ql and c++ queries
took place at the same machine5 under identical (mostly idle) load. Each
measurement represents the minimum value obtained over 100 runs.

4https://github.com/mfragkoulis/PiCO_QL/tree/master/examples/Stellarium
5Mac os x 10.6.8, 2.4 ghz intel Core 2 Duo, 2 gb 667 mhz ddr2 sdram

24

5.2. Case study 2: QLandKarte

QLandKarte is an open source gis application that displays gps data on
a variety of maps. sql queries in QLandKarte’s use case concern waypoints
of 4 thousand data elements. Measurements of pico ql and c++ queries
took place at the same machine under (mostly idle) identical load. Each
measurement represents the minimum value obtained over 10 runs.

5.3. Case study 3: CScout

cscout is a source code analyzer and refactoring browser for collections
of c programs. It can process workspaces of multiple projects (we define a
project as a collection of C source files that are linked together) mapping
the complexity introduced by the c preprocessor back into the original c
source code files. In this case study we use pico ql, c++, and Mysql
to perform sophisticated queries on the extracted identifiers, files, functions,
and function-like macros of the Linux kernel. cscout containers store 1.1
million identifiers and 89 thousand functions and function-like macros. All
measurements took place at the same machine6 under (mostly idle) identical
load. Each measurement represents the minimum value obtained over 3
runs.

5.4. Evaluation measurements presentation

Evaluation measurements consist of loc, cpu execution time, query
memory use, and marginal query code size measurements.

5.4.1. LOC measurements

The code query size is listed in Table 2. The cost of supplying a rela-
tional representation for querying the application’s data structures has not
been accounted in pico ql measurements. This is an one-off cost amor-
tized over use. cscout contains three interfaces for performing queries on
processed identifiers, files, and functions. The measurements amount to the
c++ query facility code used for calculating each of the three evaluation
queries. Query facility code does not include the generic code base shared
by all three interfaces (203 loc) and the presentation layer. Query listings
are available online.7

6Linux 2.6.32-5-amd64, 8 Dual Core AMD Opteron(tm) Processor 880 cpus, 16 gb
ram

7All query listings are included under https://github.com/mfragkoulis/PiCO_QL/

tree/master/examples/

25

Table 2: LOC measurements

Case study Query Listing pico ql c++ mysql
Stellarium Stellarium/get meteors.sql 7 31 n/a

Stellarium/get planets1.sql 8 33 n/a
Stellarium/get planets2.sql 6 40 n/a

QLandKarte QLandKarte/get points1.sql 6 76 n/a
QLandKarte/get points2.sql 7 153 n/a
QLandKarte/get points3.sql 9 38 n/a

CScout CScout/get identifiers.sql 10 425 17
CScout/get files.sql 8 425 13
CScout/get functions.sql 5 433 7

5.4.2. CPU execution time measurements

In calculating cpu execution time (Table 3) we use the built-in c time
library in pico ql and c++ queries and the built-in Mysql query report in
Mysql queries. Mysql time measurements exclude data import time.

The c++ queries in Stellarium and QLandKarte case studies were im-
plemented without putting effort to achieve optimization. Specifically, we
managed groupings in c++ using an associative container, such as a map.
An additional group by term requires an additional container embedded in
the first. In fact a multimap is convenient for accommodating a second group
by term since it provides the opportunity to group values of the second term
for which the first term has the same value. Both containers were heavily
used in evaluation queries. Algorithmic support for container operations is
limited, but most of the time it is sufficient to express the equivalent of a
having clause. In some evaluation queries, custom algorithms were used.

Table 3: CPU execution time

Case study Query Listing pico ql c++ mysql
Stellarium Stellarium/get meteors.sql 749µs 163µs n/a

Stellarium/get planets1.sql 1538µs 774µs n/a
Stellarium/get planets2.sql 1020µs 739µs n/a

QLandKarte QLandKarte/get points1.sql 184ms 8637ms n/a
QLandKarte/get points2.sql 161ms 9385ms n/a
QLandKarte/get points3.sql 90ms 8564ms n/a

CScout CScout/get identifiers.sql 2190ms 1070ms 123.30s
CScout/get files.sql 2220ms 1010ms 580ms
CScout/get functions.sql 260ms 300ms 580ms

26

5.4.3. Query memory use measurements

For calculating memory space during query processing (Table 4) we used
ltrace for pico ql and c++ queries in cscout under Linux, maximum resi-
dent set size reported by the gnu time utility for Mysql queries, and maxi-
mum resident set size reported by gnu rusage in Stellarium and QLandKarte
tested under Mac os x. Each Mysql query run took place on a freshly
started database server without cleaning the machine’s buffer cache; each
measurement represents the observed peak resident set size at the database
client. Similarly, to get a reliable measurement of the peak resident set size
from gnu time and gnu resource usage we restarted the application after
each run.

Table 4: Query memory use

Case study Query Listing pico ql c++ mysql
Stellarium Stellarium/get meteors.sql 61kB 4kB n/a

Stellarium/get planets1.sql 59kB 12kB n/a
Stellarium/get planets2.sql 41kB 49kB n/a

QLandKarte QLandKarte/get points1.sql 971kB 2683kB n/a
QLandKarte/get points2.sql 967kB 2826kB n/a
QLandKarte/get points3.sql 266kB 2572kB n/a

CScout CScout/get identifiers.sql 12kB 7kB 320kB
CScout/get files.sql 102kB 6kB 364kB
CScout/get functions.sql 6161kB 6kB 7155kB

5.4.4. Marginal query code size measurements

Marginal query code size (Table 5) was calculated by compiling the stud-
ied applications with and without query code.

5.5. Evaluation outcomes

pico ql reduces the amount of code for expressing an sql query in c++
and even seems to have enhanced expressive power compared to sql. Each
line in a pico ql query corresponds to six lines of c++ code on average.
group by clauses cause a significant fraction of this expressiveness gap.

The difference, in favour of pico ql, that we observe betweeen pico
ql and Mysql queries is explained by the reduced normalization required
in pico ql. Specifically, we have chosen to model 1:1 associations in the
same virtual table (recall section 3.1.1 for further explanation on pico ql

27

Table 5: Marginal query code size

Case study Query Listing pico ql c++ mysql
Stellarium Stellarium/get meteors.sql 234kB 47kB n/a

Stellarium/get planets1.sql 234kB 61kB n/a
Stellarium/get planets2.sql 234kB 34kB n/a

QLandKarte QLandKarte/get points1.sql 201kB 19kB n/a
QLandKarte/get points2.sql 201kB 36kB n/a
QLandKarte/get points3.sql 201kB 32kB n/a

CScout CScout/get identifiers.sql 941kB n/a n/a
CScout/get files.sql 941kB n/a n/a
CScout/get functions.sql 941kB n/a n/a

modelling), whereas in a typical relational schema there would be a table for
each entity participating in the association and a primary key / foreign key
relationship instance to accommodate the association. As a result, each pico
ql evaluation query saves two joins or four loc on average.

cpu execution time measurements show that speed mainly depends on
data sizes, optimization effort and specific query operations. Querying using
c++ programming constructs is more efficient for small data sizes (Stellar-
ium case study). Managing groupings in queries favors pico ql over c++
up to a factor of 58 for moderate data sizes (QLandKarte case study) and for
naive c++ query implementations, that is without putting effort to achieve
optimization.

Regarding the cscout case study, Mysql with indexes enabled is very
efficient but for some operations object-oriented query processing is still faster
(CScout/get identifiers.sql). For simple conditional operations c++
queries are twice as fast as pico ql in two out of three cases. In the remaining
case, pico ql slightly outperforms the c++ query implementations and is
twice as fast as Mysql. Since the corresponding query returned a large result
set (> 20000 records), a possible explanation is that pico ql performs better
in result set presentation.

Query memory use measurements show that Mysql queries consume
most memory and c++ queries consume minimum space for simple cases.
pico ql stands in between having a modest memory footprint.

Marginal query code size is considerably larger for pico ql compared to
each c++ query but this is actually the space for the library as a whole.
The cost is amortized over an arbitrary number of queries.

28

6. Discussion

Table 6: Synopsis of query languages

Query language sbql4j Memsql qbd hlqls Daytona pico ql
Computational
power

⊂sql sql ⊂sql ⊃sql ⊃sql sql

OO support � � � x x �
Queries to pro-
gram data

x x � x x �

Queries to file
data

x x x � � x

Queries to
database data

x � x �/x � x

Main memory
operation

� � � x � �

Parallel opera-
tion

x � x � � x

pico ql presents distinct objectives and characteristics compared to the
related pieces of work described in section 2.

pico ql does not belong to the class of software known as object-relational
mapping software (Bauer and King, 2006; Melnik et al., 2007); it utilizes an
object-relational mapping technique to provide a relational interface to the
object-oriented model. In pico ql in addition to classes object containers
and shared objects can be tables. This results from the way a relational
interface is overlaid on oo data (see section 3), guaranteeing a clear rela-
tional representation of oo data structures. Accessibility, inheritance, and
polymorphism follow the programming language rules.

As queries in pico ql take the form of standard sql, an advantage of the
approach is the small learning effort required for the query language. pico ql
utilises path expressions in query execution internally to anchor a c++ class
member to a virtual table column. By providing an anchor for each column,
visible c++ class attributes or methods can be referenced by an sql query.
By contrast, object-oriented query languages use path expressions directly
in queries.

Main memory dbmss with an external query interface share some con-
ceptual similarities to the current work. The most important is leveraging

29

pointers for cross-referencing objects. The main difference is that pico ql
performs querying in place, on the program data space, contrary to dbmss,
which copy and manage data in own data structures. Memsql targets c++,
but its implementation details are unavailable. Daytona is a proprietary sys-
tem that supports c applications. Daytona and pico ql have in common
a code-generating architecture, but Daytona uses a compiled procedure for
query processing (as described in section 2.2.1) compared to the interpreted
approach adopted by pico ql. In computation terms, Daytona’s query lan-
guage Cymbal includes ansi 89 sql, and in addition a procedural dialect
with a first-order logic subset, a sublanguage for set/list formers and a sub-
language for database record description. Although ansi 92 sql, which pico
ql supports, includes ansi 89 sql, Cymbal is computationally stronger.

pico ql and hlqls exhibit a number of common traits. They use a
data schema only as a means of representation and do not require a data
import. Both pico ql and hlqls provide read-only ad-hoc data analysis,
and, thus, avoid the complexity of complete data management. In addition,
they provide a user interface for queries and results. Finally, pico ql and
hlqls except jaql provide an sql flavor of non-relational non-database data.
scope and hiveql even represent data as relational tables.

There are, however, important differences. pico ql targets data struc-
tured as c++ objects in memory using a relational interface. hlqls use a
map-reduce, or another highly-parallel paradigm, and define their own type
system. pico ql uses a typical relational type system. hlqls are capable of
offline analysis of files while pico ql is used for online analysis of c++ appli-
cation data. hlqls are widely used in production against big data challenges.
hlqls allow customization of output and storage. On the other hand, in pico
ql it is possible to define standard relational (non-materialized) views in the
dsl following the standard sql syntax. Views become part of the virtual
table schema as per sqlite’s support. hlqls allow user defined functions
to take part in queries. In pico ql this is feasible by writing a function or
module and loading it to the sqlite query engine. Then it becomes available
for use in sql queries.

All in all, pico ql does not compete against hlqls. It mainly provides
query computation over in-memory c++ datasets à la sql, not massively
parallel query execution in a map-reduce fashion, or other, over datasets
located in distributed file systems.

Table 6 outlines pico ql’s contribution by summarizing the most im-
portant characteristics of the afore-mentioned related categories of query

30

languages and of this work.

7. Conclusions

We presented the design and implementation of an approach for mapping
the object-oriented model to a relational interface. The approach allows sql
queries to execute on object-oriented data structures through their relational
representation. The implementation, pico ql, delivers a usable sql interface
for interactive, ad-hoc queries to c++ program objects. Its evaluation shows
query expressiveness, often enhanced query speed and low memory footprint.
For applications that only require a dbms’s query facilities, a fully-fledged
dbms is superfluous. Introducing it would mean adding an intrusive de-
pendency, extra overhead, and writing boilerplate code for interacting with
the application, which would litter application code. pico ql is valuable to
those applications by offering a lightweight sql interface for querying the
application’s data structures. pico ql could be advantageous in situations
that require managing software state, like application server resource moni-
toring, stream processing and scientific computing. Future work will target
performance optimizations and extending support of data structures and al-
gorithms.

Code availability

The full source code of pico ql, wiki, and examples can be found in
https://github.com/mfragkoulis/PiCO_QL. The code is available under
the Apache license.

Acknowledgements

This research has been co-financed by Foundation Propondis and by the
European Union (European Social Fund — ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) — Research Funding Pro-
gram: Thalis — Athens University of Economics and Business — Software
Engineering Research Platform.

Adamus, R., Habela, R., Kaczmarski, K., Lentner, M., Stencel, K., Subieta,
K., 2008. Stack-based architecture and stack-based query language. In:
ICOODB. pp. 77–96.

31

Basili, V. R., Caldiera, G., Rombach, H. D., 1994. The Goal Question Metric
approach. In: Encyclopedia of Software Engineering. Vol. 1. Wiley, pp.
528–532.

Bauer, C., King, G., Nov. 2006. Java Persistence with Hibernate, revised
Edition. Manning Publications.

Beyer, K. S., Ercegovac, V., Krishnamurthy, R., Raghavan, S., Rao, J., Reiss,
F., Shekita, E. J., Simmen, D. E., Tata, S., Vaithyanathan, S., Zhu, H.,
2009. Towards a scalable enterprise content analytics platform. IEEE Data
Eng. Bull. 32 (1), 28–35.

Cattell, R. G. G., Barry, D. K. (Eds.), 2000. The object data standard:
ODMG 3.0. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Chaiken, R., Jenkins, B., Larson, P. A., Ramsey, B., Shakib, D., Weaver,
S., Zhou, J., Aug. 2008. SCOPE: Easy and efficient parallel processing of
massive data sets. Proc. VLDB Endow. 1 (2), 1265–1276.

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger,
J. F., 2009. Bidirectional transformations: A cross-discipline perspective.
In: Proceedings of the 2nd International Conference on Theory and Prac-
tice of Model Transformations. ICMT ’09. Springer-Verlag, Berlin, Heidel-
berg, pp. 260–283.

Dean, J., Ghemawat, S., Jan. 2008. Mapreduce: simplified data processing
on large clusters. Commun. ACM 51 (1), 107–113.

Flanagan, D., Matsumoto, Y., 2008. The Ruby programming language, 1st
Edition. O’Reilly.

Frohn, J., Lausen, G., Uphoff, H., 1994. Access to objects by path expressions
and rules. In: Proceedings of the 20th International Conference on Very
Large Data Bases. VLDB ’94. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, pp. 273–284.

Goldsmith, S. F., O’Callahan, R., Aiken, A., 2005. Relational queries over
program traces. In: Proceedings of the 20th annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Ap-
plications. OOPSLA ’05. ACM, New York, NY, USA, pp. 385–402.

32

Greer, R., 1999. Daytona and the fourth-generation language Cymbal. In:
Proceedings of the 1999 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’99. ACM, New York, NY, USA, pp. 525–526.

Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M., 2011. Data rep-
resentation synthesis. In: Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI ’11.
ACM, New York, NY, USA, pp. 38–49.

Keith, M., Schincariol, M., 2009. Pro JPA 2: Mastering the Java Persistence
API, 1st Edition. Apress, Berkely, CA, USA.

Lampoudi, S., Beazley, D. M., 2002. SWILL: A simple embedded web server
library. In: Demetriou, C. G. (Ed.), Proceedings of the FREENIX Track:
2002 USENIX Annual Technical Conference, June 10-15, 2002, Monterey,
California, USA. USENIX, pp. 19–27.

Lehman, T. J., Carey, M. J., 1986. Query processing in main memory
database management systems. In: Proceedings of the 1986 ACM SIG-
MOD international conference on Management of data. SIGMOD ’86.
ACM, New York, NY, USA, pp. 239–250.

Lencevicius, R., Hölzle, U., Singh, A. K., Jan. 2003. Dynamic query-based
debugging of object-oriented programs. Automated Software Eng. 10 (1),
39–74.

Meijer, E., Oct. 2011. The world according to LINQ. Commun. ACM 54 (10),
45–51.

Meijer, E., Beckman, B., Bierman, G., 2006. LINQ: Reconciling object, rela-
tions and XML in the .NET framework. In: Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’06.
ACM, New York, NY, USA, pp. 706–706.

Melnik, S., Adya, A., Bernstein, P. A., 2007. Compiling mappings to bridge
applications and databases. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’07. ACM,
New York, NY, USA, pp. 461–472.

33

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton,
M., Vassilakis, T., Sep. 2010. Dremel: Interactive analysis of web-scale
datasets. Proc. VLDB Endow. 3 (1-2), 330–339.

MemSQL, 2013. The MemSQL database. Available online http://memsql.

com/ Current March 2013.

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A., 2008. Pig
Latin: A not-so-foreign language for data processing. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’08. ACM, New York, NY, USA, pp. 1099–1110.

Owens, M., 2006. The Definitive Guide to SQLite (Definitive Guide). Apress,
Berkely, CA, USA.

Reese, G., 2000. Database Programming with JDBC and Java, 2nd Edition.
O’Reilly & Associates, Inc., Sebastopol, CA, USA.

Sanders, R. E., 1998. ODBC 3.5 Developer’s Guide. McGraw-Hill Profes-
sional.

Schwartz, J. T., Dewar, R. B., Schonberg, E., Dubinsky, E., 1986. Program-
ming with sets; an introduction to SETL. Springer-Verlag New York, Inc.,
New York, NY, USA.

Spiewak, D., Zhao, T., 2010. ScalaQL: Language-integrated database queries
for Scala. In: Proceedings of the Second International Conference on Soft-
ware Language Engineering. SLE ’09. Springer-Verlag, Berlin, Heidelberg,
pp. 154–163.

Spinellis, D., Apr. 2010. CScout: A refactoring browser for C. Sci. Comput.
Program. 75 (4), 216–231.

Stewart, R. J., Trinder, P. W., Loidl, H. W., 2011. Comparing high level
mapreduce query languages. In: Proceedings of the 9th International
Conference on Advanced Parallel Processing Technologies. APPT ’11.
Springer-Verlag, Berlin, Heidelberg, pp. 58–72.

Stonebraker, M., Cetintemel, U., 2005. “one size fits all”: An idea whose time
has come and gone. In: Proceedings of the 21st International Conference
on Data Engineering. ICDE ’05. IEEE Computer Society, Washington,
DC, USA, pp. 2–11.

34

The SQLite team, 2013. The virtual table mechanism of SQLite. Available
online http://www.sqlite.org/vtab.html Current March 2013.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony,
S., Liu, H., Murthy, R., Mar. 2010. Hive - a petabyte scale data ware-
house using Hadoop. In: ICDE ’10: Proceedings of the 26th International
Conference on Data Engineering. IEEE, pp. 996–1005.

Wcislo, E., Habela, P., Subieta, K., 2011. A Java-integrated object oriented
query language. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S.,
El-Qawasmeh, E. (Eds.), Informatics Engineering and Information Sci-
ence. Vol. 251 of Communications in Computer and Information Science.
Springer Berlin Heidelberg, pp. 589–603, 10.1007/978-3-642-25327-0 50.

Willis, D., Pearce, D. J., Noble, J., 2006. Efficient object querying for Java.
In: Proceedings of the 20th European Conference on Object-Oriented Pro-
gramming. ECOOP ’06. Springer-Verlag, Berlin, Heidelberg, pp. 28–49.

Marios Fragkoulis is a graduate researcher at the Athens
University of Economics and Business (AUEB), Depart-
ment of Management Science and Technology. He holds
a BSc in Management Science and Technology from the
Athens University of Economics and Business (Distinction)
and a MSc in Computing Science from Imperial College
London (Distinction).

Diomidis Spinellis is a Professor in the Department of
Management Science and Technology at the Athens Univer-
sity of Economics and Business, Greece. He is the author of
two award-winning books, Code Reading and Code Quality:
The Open Source Perspective. He is a member of the IEEE
Software editorial board, authoring the regular Tools of the
Trade column. Dr. Spinellis holds an MEng in Software

Engineering and a PhD in Computer Science, both from Imperial College
London and is senior member of the ACM and the IEEE.

Panos Louridas is a senior researcher at Department of
Management Science and Technology of the Athens Univer-
sity of Economics and Business and a program manager at

35

the Greek Research and Education Network (GRNET), re-
sponsible for cloud computing projects. He has published in
all aspects of software engineering while remaining a prac-
tising developer. He holds a Diploma in Informatics from
the University of Athens and a MSc by Research and a PhD

from the University of Manchester. He is a member of the ACM, the IEEE,
USENIX, and AAAS.

36

