VIRTUAL REALITY: "technology framework and case studies"

Konstantinos Loupos, MSc, MEng (ICCS) <u>kloupos@iccs.gr</u>

Contents

- ▶ The I-SENSE Group
- Virtual Reality
- 3 Case Studies
 - VIRTHUALIS
 - MANUVAR
 - INTUITION
- EuroVR Association

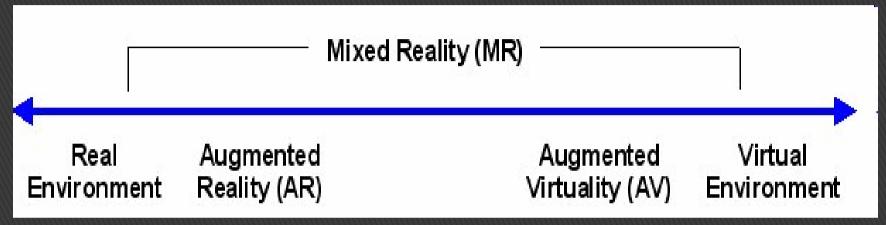
I-SENSE GROUP

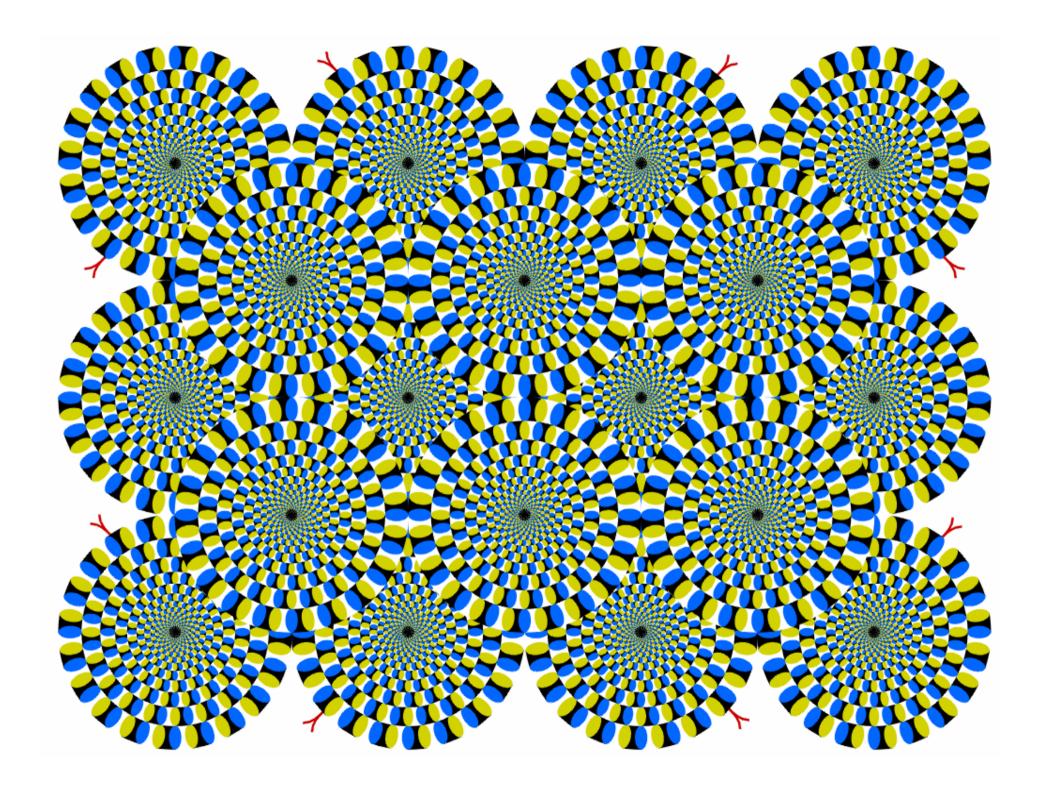
- National Technical University of Athens
 - Department of Electrical Engineering
 - Microwave and Fiber-Optics Laboratory
 - I-SENSE Group
 - VR Lab

VR LAB

TO POST OF THE POS

- ▶ ICIDO PowerWALL
 - Passive Stereo
 - Infrared Tracking
 - Hornet (interaction)
- Mobile System
 - PS Tracker (opt. tracking)
- **HMD**
- Data Glove




VIRTUALITY vs **REALITY**

Reality-Virtuality continuum : Paul Milgram

Augmented Reality: virtual augments the real

Augmented Virtuality: real augments the virtual

Definition of Virtual Environment

A virtual environment is an interactive, virtual or real image displaying, enhanced by special processing to convince its users that they are directly immersed into it

Components of a VR System

Projection

Glasses / Stereo Vision

Screen

Interaction

Body Tracking

Haptic Device

Surround Sound

Konstantinos Loupos (ICCS)

Images of Virtuality: Conceptualizations and Applications in Everyday Life

Virtual Reality Systems



Konstantinos Loupos (ICCS)

- VIRTHUALIS (IP)
 - Industrial Safety using VR (petrochemical)
- MANUVAR (CP-IP)
 - Lean Manufacturing using VR
- ▶ INTUITION (NoE)
 - Structuring ERA
 - Bringing Together Knowledge in VR

VIRTHUALIS

VIrtual RealiTy and Human factors AppLications for Improving Safety

Project Type: IP

Duration: 4 years (from May 1st 2005)

▶ Budget: 9 M€ Project

Industrial Safety

- Huge Industrial Spending to:
 - Improve safety
 - Reduce risks of causing damage to equipment and human injuries

Industrial Safety .. more

- Typical and practical safety issues in industrial sites:
 - Training for control room operators
 - Emergency response teams training
 - Assessment of the impact of plant modifications
 - Managers' assistance in defining the impact of their decisions on operators' work
 - Coordination between safety management functions
 - Increase Risks awareness
 - Accident Analysis and "what if" scenarios

VR in <u>Training</u> Simulators

- Provides Realistic Behavior of the Training Task
- Imposes Related Psychological Stress
- Attains Realistic Training Conditions
- Exposes Trainee to full complexity of the task

VR for Risk Assessment & Accident Investigation

- Familiarization with Plant Layout
- Real-time Response of Fully Emulated Plant (linking to process simulators)
- Examine "what-if" Scenarios
- Identification of Ignition Sources
- Error Detection and Classification
- Investigation of correctness of Planned Procedures

VR for <u>Safety Management</u>

- Accident Prevention
- Handling of emergencies
- Identifying Countermeasures
- Familiarizing with Critical Plant Points

Design stage

Operational stages

Emergency stage

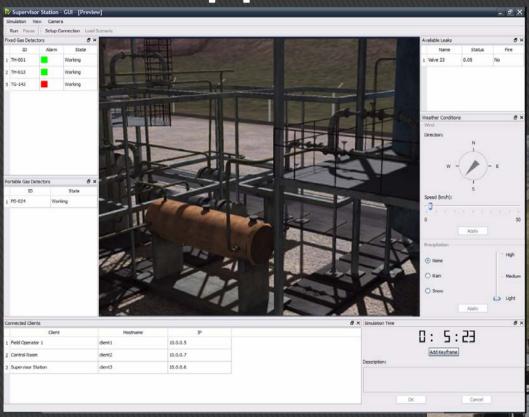
- Exploration & Drilling
- Construction
- Commissioning
- Operation
- Maintenance,Repairs &Modifications
- Decommissioning

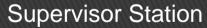
- Site:
 - Chemical Plant
- Actors:
 - Field Operator
 - Control Room Operator
- Scenario:
 - Familiarization With Plant And Emergency Procedures
 - Locate Gas Leakage
 - Perform Corrective Actions/Maintenance

Practical RA Use-Case

- Beginning of scenario:
 - Leakage alarm in Control Room

- Execution of protocol procedures
 - CR communicates/cooperates with F.Op. to execute emergency procedures
 - F.Op. locates leakage (if real)
 - Takes measures (if real)
- Simulation Execution
 - F.Op. navigates inside real plant
 - Communicates with CR
 - Interacts with environment
 - Performs safety tasks and/or corrective actions





Practical RA Use-Case

- Benefits from simulation
 - Simulation of hazardous procedures
 - Familiarization with plant components/procedures
 - Interaction with Virtual plant
 - Replication of the real plant and its processes
 - Decision making support
 - Post analysis of simulation
 - Check performance
 - Validate procedures

The Applications

Konstantinos Loupos (ICCS)

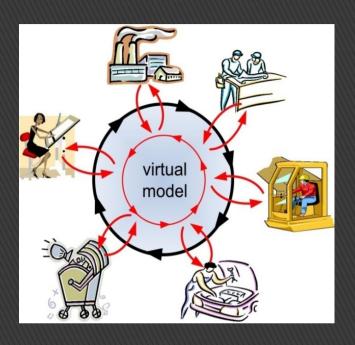
- Member of the Executive Board
- VR Expert
- Main developer for VR applications
- Technical Responsible for VR Developments
- Leader of the Development WPs
- Key-Role in Testing and Training tasks

Manual Work Support throughout System Lifecycle by Exploiting Virtual and Augmented Reality

Project Type: CP-IP

Duration: 4 years (from May 1st 2009)

▶ Budget: ~7 M€ Project



ManuVAR Aims

- Increase <u>productivity and quality</u> and reduce cost of high value manual work in the whole lifecycle;
- Facilitate <u>adaptation to product customization</u> and changes;
- Support <u>efficient knowledge and skill management</u> through the lifecycle;
- Help companies to <u>improve their business models and</u> <u>competitiveness</u> and to move up the value chain by exploiting the strengths of high value, high knowledge manual work.

ManuVAR concept

- Prototype manual work
- Capture feedback
- Accumulate, transform, update and reuse knowledge
- Optimization of the entire lifecycle
- Bi-directional flows of information
- Reference to VM (DMU, PDM/PLM)

- Virtual/Augmented Reality Technologies
- Employ advanced HMI
- Natural medium for the communication between the human and the complex VM (DMU, PDM/PLM data and models)

Images of Virtuality: Conceptualizations and Applications in Everyday Life

- Technology
 - Placing VM in the core of lifecycle!
 - Technology Platform
- Methodology
 - Considering all aspects of ergonomics!
 - Methodological Framework
- Business and Policy
 - Enabling lead users to take up project results and launch business beyond ManuVAR
 - Business & Policy Framework:

Industrial Sectors

Remote training

Manufacturing design

Images of Virtuality: Conceptualizations and Applications in Everyday Life Nuclear plants maintenance

Maintenance of heavy machinery

Konstantinos Loupos (ICCS)

ManuVAR Applications

- VR platform
- AR applications for maintenance
- VR applications for training
- Suitable HMI interface
- High level of interaction with VM

I-SENSE Role in ManuVAR

- VR Expert
- Technical Responsible for VR Developments
- Leader of the Development WP

Network of Excellence on VIrtual Reality

aNd VirTUal Environments ApplIcaTIONs

for Future Workspaces

- EC co-funded project (IST)
- 60 contractual partners
- *Funding: Up to 6M€*
- Duration of EC Funding: 4 years

Network Management Committee

Integration Activities

Research Activities Dissemination Activities

Management Activities

Aerospace

Automotive and Transport

Constructions

Energy

Entertainment and Culture

Medicine/Neuroscience

Education and Training

Augmented Reality

Engineering/Design

Evaluation and Testing

Haptic Interaction

VR / VE Technologies

dvisory Board

Images of Virtuality: Conceptualizations and Applications in Everyday Life

Konstantinos Loupos (ICCS)

Integrating activities in INTUITION

Needs:

- User requirements collection and analysis
- Synthesis of VR/VE skills in Europe and worldwide
- Consolidation of research activities Projects resource tool
- Increase in external participation through INTUITION forum
- Highlight levels of use and best practices

Resources:

- European Virtual Lab
- Virtual Employment Office
- Technological Observatory
- Mobility schemes activated

Knowledge:

- Identifying education and training courses available
- Discussions with Universities about EU PhD programme
- Defining key actors and topics within the EU PhD programme
- Knowledge management through a knowledgebase system.
- Internal and external projects

- Internal Projects
 - Short term projects between INTUITION partners
 - Focused on integration activities
- Preparation of new research initiatives
 - Strong participation in FP6 and in National Programmes
 - A comprehensive strategy has been designed towards
 FP7
- Meetings and workshops
 - Regular Working Groups meetings
 - Annual Workshops
 - E–Forum

I-SENSE Role in INTUITION

- Project Coordinator
- Leadership and Participation into various WGs

Euro VR

European Commission DG Information Society FP6-funded Project

Images of Virtuality: Conceptualizations and Applications in Everyday Life

Konstantinos Loupos (ICCS)

Euro-VR

- Association on Virtual Reality
- Non-profit organization
- Gathering of:
 - Academia
 - Institutes
 - Companies and other
- Vision emerged from INTUITION NoE
- <u>Target:</u> Promotion of Virtual, Augmented and mixed Reality in Europe

Needs for research

CONTROL OF THE PROPERTY OF THE

Information:

- Quality access to other research
- Practical information for implementation of:
- On different level: student, user, expert
- Free or as inexpensive as possible!

Exchange:

- Workshops, Conferences, etc.
- Publication platform
- Special Interest Groups
- Finding research partner
- Finding exploitation/dissemination partner

Organizational Support:

- Funding schemes
- Project management information
- Contact points for above
- Contact points for support
- Lobbying for set-up of VR/AR research programmes
- IT Platform for all the information Knowledge-Base

Association Objectives

- To promote Virtual, Augmented and Mixed Reality in Europe and beyond;
- To come up with a research oriented program and plan future research activities;
- To facilitate VR implementation in future workspaces;
- To best serve its members by providing them with relevant services and events.

Association Services

- Networking with the VR and AR Stakeholders
- Access to the European VR knowledge base
- Information on opportunities of collaboration
- Research of Exploitation of Projects
- Access to the Virtual Employment Office
- Discount prices for International Workshops
- Access to organized Training Courses
- Access to VR platforms
- Consultancy in VR project management

Angelos Amditis a.amditis@iccs.gr

Thank you for your attention!

Konstantinos Loupos kloupos@iccs.gr

